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Problem Definition

OGiven a set of n+1 points {(x;, f)}.
OFind a function f(x) defined for arbitrary

X, such that
Approximation: Interpolation:
f)-fi=e  f(x)-f =0
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Problem Definition (2)

[Generally there is no way to predict the
values in-between the given (measured)

points (x;, f;).
[(We need knowledge of the space of
functions, that our measurements were

made in. @

Xi Xy
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Mathematical Approach (2)

Odifferent possible bases:
Orepresent different function spaces
Ovary in quality
Ovary in computational efficiency

UResort to:

OPolynomial interpolation
OTrigonometric functions
OWavelet basis
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Lagrange Polynomials

ODefined as:
() = (X =%)(X =%) -+ (X =X 4 )(X = X40) -~ (X = X;)

(X =%)08 =)+ (6 %) (X =X.0) (6 = %;)

Overy costly to evaluate - use
OPower form or Horner's Method
ONewtons form

Oaccuracy problems
Opiecewise polynomials
Oorthogonal polynomials
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Mathematical Approach

O Usual assumptions are:
Ospace of smooth functions C"
Ospace of bandlimited functions
OFunction spaces characterized by
specific basis functions @(x),

OEach function expressed as a linear
combination of these bases:

F) =a,@(X) +a@ () +...
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Polynomial Interpolation

O Given: Set of n+1 points S = {(x;, f)}

O Sought: Representation of f(x) in the
polynomial basis @(x) = X

O there is a unique polynomial p,, of degree n,
that interpolates S

n

£ =p,(x) =a,x° +ax‘ +...+a,x
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Piecewise Polynomial Interp.

[Restrict to low degree polynomials that
are “stitched” together.
[Many possible schemes for PPI, which
differ in their accuracy, and features
OHermite,
OBezier
Opth degree Splines
OB-splines/NURBS.
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Orthogonal polynomials

0O Computation of coefficients of p,(x) is
unstable.

0 Basis x' is not orthogonal.

0 Rewrite polynomial p,(x) in a different,
orthogonal, basis P;:

P, (X) =Ry (X) +BR(X) +...+B,R (X)

O with condition:

<p P >W =}R(X)PJ (Xw(x)dx =0

i1

Theory-Math Theory-SP Interpolation Derivative |

Trigonometric functions

OMore than just a tool for interpolation

OWidely used for analysis of signals
Cont. Basis functions: Discrete Basis functions:

0,09 = e g (k) ="
Fourier Transform Discrete Fourier Transform
- n-1 -

f(x) = J-F(u)eiuxdu fj = Z erIZle/n

1° s i2rik/
F(u)=— [ f(x)e™d F =—§ f eenin
(u) 5 :[o (x) X k né j
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Requirements

OPerformance
O Stability of the numerical algorithm
OAccuracy (numerical + perceptual)
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Orthogonal polynomials (2)

0 Common orthogonal polynomials:
OLegendre
OChebychev
OTrigonometric functions (not polynomials)
OBessel functions (not polynomials).
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Fourier Transforms

There are 4 major transforms used
Name Spatial D.|Freg. D. Use
FT - Fourier .
cont. cont. for analysis
Transform
FS - Fourier . Interpolation
. cont. | discret
Series trad. Math appr.
DTFT - Discrete . Filter Design
. discret cont.
Time FT trad. SP appr.
DFT - Discrete FT| discret | discret |Implementation

(computer)
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Requirements (2)

OAccuracy considerations depend on
underlying function space.

OFor smooth function spaces, we
consider asymptotic error behaviors.

OFor bandlimited spaces, we consider
blurring, aliasing and overshoot
(Frequency domain).

ONot considered — Perceptual metrics
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Signal Processing ldeas

Engineering approach:
Oblack-box

—p “System” or —p
Algorithm

Odiscretization:

\/\$ Multiplication with |y,
“shah” function
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Signal Processing ldeas (3)

Original
(continuous) signal

o | “manipulated”
»
(continuous) signal

“Graphics”

o)

O,
m(:@
/ .
<
%

Reconstruction sampled
filter .
signal
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Convolution (2)

O Finite Impulse Response (FIR) vs.
O Infinite Impulse Response (IIR)
O Impulse: d(x)=0,if x£0

J’é(x)dx =1
O discrete impulse:

dk]=0,if k%0
5[0]=1
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Signal Processing ldeas (2)

Enqgineering approach (cont.):
Onearest neighhor

— Convolution with #W
box filter m

Olinear filter:

— Convolution with Ly
tent filter /)
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Convolution

OHow can we characterize our “black box”?
OWe assume to have a “nice”
box/algorithm:
Olinear
Otime-invariant
Othen it can be characterized through the
response to an “impulse”:

—p| “System” or —y,.
Algorithm &’
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Convolution (3)

An arbitrary signal x[k] can be written as:
X[k] = 0 [k +1] +X{0J8[K] +X[1oTk -1 + -

Let the impulse response be h[k]:

—p “System” or —p
6[k] Algorithm h[k]
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Convolution (4)

O for a time-invariant system h[k-n] would be
the impulse response to a delayed impulse
o[k-n]

O hence, if y[K] is the response of our system
to the input x[k] (and we assume a linear

IIR - N=inf.
FIR - N<inf.

system): N
k] = ZNX[n]h[k-n]

—p] “System” or L
X[k] Algorithm y[k]
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Fourier Transforms (2)

O Hence €% is an eigen-function and H(w) its
eigenvalue

0 H(w) is the Fourier-Transform of the h[n] and
hence characterizes the underlying system in
terms of frequencies

0 H(w) is periodic with period 21t

0 H(w) is decomposed into
Ophase (angle) response < H (w)
O magnitude response ‘H (w)‘
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Transforms Pairs
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Fourier Transforms

OLet’s look at a special input sequence:
X[k] =€
Othen: .

y[ k] = zNeiw(k—n) h[ n]

=g« _%Ne‘“""h[n]

= H(w)e*
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Fourier Transforms - Example

OLet's look at a simple example of
averaging: hO0] =h[1]=0.5
1

1
Othen: yiK] = Z e h[n] = e Ze“wo.5

= iak0.5(e0+e—iw)

=d*05e 72672 + &%)

_ Ak ‘i% w,
=ee 005/2
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Transforms Pairs (2)
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Transform Pairs - Shah

0 Sampling = Multiplication with a Shah
function:

= i —>
, sampling _

Omultiplication in spatial domain =
convolution in the frequency domain

Ofrequence replica of primary spectrum
(also called aliased spectra)
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Ideal Reconstruction

0 Box filter in frequency domain =
0 Sinc Filter in spatial domain
O impossible to realize (really?)

.— ldeal filter
Smoothing

Practical

filter Post-aliasing
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Higher Dimensions

O An-isotropic Filters
O (radially symmetric)

‘ h(x, y) = h(\/XZTy2 ) [ h(x, y)=h(x)ch(y)
<\
-

separable filters
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Basic Pipeline
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Ideal Reconstruction (2)

s L s

Low-pass band-pass high-pass
filter filter filter

Realizable filters do not have sharp transitions;
also have ringing in pass/stop bands
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Frequency Domain Issues

O Postaliasing
Oreconstruction filter passes frequencies
beyond the Nyquist frequency (of
duplicated frequency spectrum)
OFrequency components of the original
signal appear in the reconstructed signal at
different frequencies
0 Smoothing

Ofrequencies below the Nyquist frequency
are attenuated
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Frequency Domain Issues (2)

ORinging (overshoot)

Ooccurs when trying to sample/reconstruct
discontinuity

O Anisotropy
Ocaused by not spherically symmetrlc filters

Aliasing Blurring
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Ideal Interpolation

Spatial Domain: Frequency Domain:

cut off freq. replica
Slnc( ) M
TIX

convolution is exact

f.(x)-f(x)=0

0 0% 01 05 02 0% 03 05 04 045 5
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An easy fix - Windowing

OMultiply Sinc with a window:

ORectangular Windm:[ll -M st_sM
otherwise
OBartlett [1+/ ~M<t<0
vvind(t):g—))'lll;I 0<stsM

ul

OHamming/Hanning 5 0 otherwise

HJHﬁCOSBT H -M<t<M

PRYIPR SN

wind(t) =

15
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Filter Evaluation/Design

Frequency Domain
global features

robust noise handling
no blurring

no aliasing

DSP chips (audio, video)
0 Signal Processing

DFT/Laplace Transform
divergence from Ideal

Spatial Domain
local features

minimal error
smoothness
CAD, numerical solvers

O Approximation

Theory/Analysis
discrete moments
asymptotic error
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An easy fix - Windowing
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Spatial Design

OKeys - Cardinal Splines
Ucubic interpolation filter - symmetric & C2
Ocompares methods in spatial & frequency d.
OMitchell/Netravali - BC-splines
Ocubic interpolation filters - symmetric & Ct
Ocardinal splines are subset
Onumerical & user study




Theory-Math Theory-SP Interpolation Derivative |

Mitchell & Netravali

14 Cubic Interpolation Filter for B=C

-2 -15 -1 05 05 1 15

0 020406 C 1
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Accuracy

[(Taylor Series:

O approximate the error of the numerical
algorithm

O evaluate its asymptotic behavior.
[Assumption:

some derivatives of the underlying function f
exist.

109 =10+ O 025
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Meaning of the a’s

f.(t) =a,f +..+a,,fN D +a, ™ +a, O+
wir L&
a)(r) _sz_w(k 7)"W(r - k)

OThey are nothing but discrete moments !

OAnd one can also prescribe the accuracy
of reconstructed function
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Méoller, Machiraju, Mueller, Yagel

OAssumes smooth function space

OGeneral scheme for spatial accuracy
evaluation of filter functions

[0 Generalization of Keys’ method using a
Taylor series expansion

OEnables filter evaluation and design
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Spatial Domain Evaluation

O Reconstruction of the underlying function:

f.(t) #%f ‘+ +a, fO? +‘aN fN +a,, FOD+

Normalize Is ay(1) = 1?
Classify How many a,(t)=0 for I>N?
Error How large is the error term?
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Error Estimation

50<8 g O

Error of the Cubic Derivative filter

600000
500000
400000
300000
200000
100000

with a=-1 applied to f(x) = x°

) hL |

0 2 1 11
5 10 15 20 25 30 35 40 x 50
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Accuracy Not Enough
am T

OMissing
perceptual
influence
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Spatial Filter Design

What ACCURACY How SMOOTH
do we require from 4= | (space C") should the
the reconstruction reconstructed function
process? be?
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Marschner/Lobb

OFrequency Domain Design
OMeasure the derivation from the ideal

/ ideal filter

| smoothing error

—

actual filter

\>‘/< postaliasing error
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Smoothness

OSmoothness = Visual Artifacts
OReconstructed Function:

f,(t) =... +F (K <Dt —(k =D) +  (K)w(t k) +...

For f to be smooth (in CM) the filter weights
must be smooth:

w, OC" W (1) = w2 (0)
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Interpolation filters

[ PR
Cmr""umm/\m./\wﬂu.._/\_m
“ A A ALAL
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Marschner/Lobb Evaluation

Postaliasing
=379
01 =
(0,05} 0.0
= Catmull-Rom (0.0)
0.08
pass-band
optimal
0.06 ilters
L]
0.04 9pt® Tpt
0.02 windowed sincs
0 .
nz

Smucthing
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Carlbom

« Approximates ideal frequency response
* Uses Remez algorithm to minimize error:
E (w) =max(W (w) | H(w) - F () |)
< With ideal interpolation filter
F(w) =™
OWhere T is the reconstruction offset
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Bentum, Lichtenbelt, Malzbender

O Spatial domain method

frequency in radis

Ostudy gradient
filter according
to analytical
derivative of the |
interpolation
filter. .

3
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Example

O Good interpolation filters

a(1) =1 a(1)=0 a,(1)=0
OGood derivative filters

H(M=0 a(1)=1 a(1)=0

OGood 2™ derivative filters
(D=0 a()=0 a(r=1
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Ideal Derivatives

Spatial Domain: Frequency Domain:
convolution is exact cut off freq. repllca
‘ frd (X)— f '(X) = 0‘ Cosc(x) = COS)((T'X) _sin(m)

2
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Spatial Domain Evaluation

OReconstruction of the M derivative:

f.(t) =a,f +..+a ,f o +{aN f (N)‘+aN+1f (N 4

Analyze Are all a,(t) = 0 for I<N?
Normalize Is ay(t) = 1?

Classify How many a,(1)=0 for I>N?
Error How large is the error term?
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Spatial Filter Design

Which DERIVATIVE of the original
function do we want to

/ reconstruct? \
e N

What ACCURACY How SMOOTH
do we require from |g¢=—=p| (space C") should the
the reconstruction reconstructed function
process? be?
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Derivative Filters
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Results - Volume Rendering

linear error cubic error
derivative filter  derivative filter
& 7t N =7
discontinuous  *\Paaaull ‘\ X \
derivative
filter

I V
Ui .?‘
o4

CO continuous
derivative
filter
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Results - Pattern Mapping
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Normal Estimation Schemes

* Method (FD)H - derivative first
* Compute normal at grid points
* Interpolate new normals
* Method (FH)D - interpolation first
« Reconstruct continuous function f(t)
* Apply discrete derivative filter

* Method F(DH) - continuous derivative (new)
« Convolve derivative filter with interpolation
filter
« Apply this filter to the data samples

e Method FH'- analytic derivative

. \vtical deri f the | lation f
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Results - Pattern Mapping

discontinuous
linear error
derivative

CO continuous C! continuous
quadratic error  quadratic error
derivative filter  derivative filter
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Results - Pattern Mapping
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Results - Pattern Mapping
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Frequency Domain Design

OWe are far from ideal filtering.

OHow can we approach it?
ideal filter

smoothing error

actual filter

/ postaliasing error
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Dutta Roy & Kumar

OBased on maximal linearity at desired
frequencies (maxlat filters)

Tdeal curve
Hlw=w
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Frequency Considerations

Accuracy Smoothness
C
HO©)=j"a,)  [H@)s e

All such filters have Iinearvphase.
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Quick Fix - Windowing (Goss)

OWindow of ideal derivative filter (Cosc).
OKaiser window (based on Bessel Functions)

Magnitude

Summary

[ Spatial domain approach allows intuitive
constraints on filters
O(local) accuracy
Osmoothness

OFrequency domain approach allows
Ointerpretation of designs
Owise choice of parameters




